Raman spectroscopic characterization of a Martian SNC meteorite: Zagami

نویسندگان

  • Alian Wang
  • Bradley L. Jolliff
  • Larry A. Haskin
چکیده

To demonstrate the ability of Raman spectroscopy to determine the mineralogical character of a rock that originated on Mars, we analyzed a small slab of “normal Zagami” by point analyses and multipoint scans using laboratory spectrometers. Spectra of clinopyroxenes were dominant; their compositions were estimated from a calibration of Raman peak positions with Mg/(Mg+Fe) based on lunar pyroxenes of known composition, and these agree with compositions obtained by electron microprobe. A few spectra of orthopyroxene were observed. The broad spectrum of maskelynite was observed, but not that of plagioclase feldspar. Spectra of minor phosphates, magnetite, and pyrrhotite were obtained, as were spectra of an organic contaminant and of hematite, both apparently introduced during sample handling prior to Raman analysis. The modal analysis based on the multipoint scans agrees well with published values. If the spectra had been obtained on the surface of Mars by Raman spectroscopic analysis as a standalone method and no other information about the sample was available (and by ignoring the spurious hematite and organic material), we could rule out sedimentary and plutonic rock types and conclude that the sample was a pyroxene-phyric basalt.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signatures of the martian atmosphere in glass of the Zagami meteorite.

Isotopic signatures of nitrogen, argon, and xenon have been determined in separated millimeter-sized pockets of shock-melted glass in a recently identified lithology of the meteorite Zagami, a shergottite. The ratio of nitrogen-15 to nitrogen-14, which is at least 282 per mil larger than the terrestrial value, the ratio of xenon-129 to xenon-132 = 2.40, and the argon isotopic abundances match t...

متن کامل

Constraints on the U-Pb isotopic systematics of Mars inferred from a combined U-Pb, Rb-Sr, and Sm-Nd isotopic study of the Martian meteorite Zagami

Uranium-lead, Rb-Sr, and Sm-Nd isotopic analyses have been performed on the same whole-rock, mineral, and leachate fractions of the basaltic martian meteorite Zagami to better constrain the U-Pb isotopic systematics of martian materials. Although the Rb-Sr and Sm-Nd systems define concordant crystallization ages of 166 6 Ma and 166 12 Ma, respectively, the U-Pb isotopic system is disturbed. Nev...

متن کامل

MICRO RAMAN SPECTROSCOPY OF AMPHIBOLES AND Al-Ti-RICH PYROXENES IN THE MARTIAN METEORITES ZAGAMI AND LEW88516. T. Mikouchi

Introduction: Amphibole has been reported from a few groups of Martian meteorites (basaltic, lherzolitic and dunitic groups) [1-4]. They are always present within a magmatic inclusion trapped in pyroxene and olivine in spite of the large difference of the host petrology. Their mineral compositions are almost identical to one another and are kaersutitic. So far, only observations by optical micr...

متن کامل

The Effect of Flourine on the Liquidus of an Adirondack-class Martian

Introduction: This study presents first experimental results on the effect of fluorine on near-liquidus phase equilibria of an Adirondack-class Martian basalt. The basis of this study is our previous work on anhydrous [1] and chlorine bearing [2] systems which has already shown that: 1) the Adirondack-class basalts are evolved liquid compositions [1] and 2) that chlorine has a large effect on l...

متن کامل

Uranium-lead Isotopic Systematics of the Martian Meteorite Zagami

Introduction: The crystallization age of Zagami has been well established by the Rb-Sr and Sm-Nd isochron techniques. Isotopic analysis on purified mineral fractions yield Rb-Sr ages of 178±3, 174±14, and 163±19 Ma [1-2], and a Sm-Nd age of 163±7 Ma [2]. Whole rock and leachate pairs have also been analyzed for U-Th-Pb isotopes and yield a Th-Pb age of 230±5 Ma and a U-Pb age of 229±8 Ma [3]. C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001